CS 4530 & CS 5500
Software Engineering

Lecture 9.3: Software Engineering & Security Threats

Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences
© 2021, released under CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe that security is a spectrum, and be able to define a realistic
threat model for a given system

* Evaluate the tradeoffs between security and costs in software
engineering

What does it mean for a system to be secure?
CIA: An overview of security properties

* Confidentiality: is information disclosed to unauthorized individuals®?
* |ntegrity: is code or data tampered with?

* Avallability: is the system accessible and usable?

Security isn't (always) free

In software, as in the real world...

* You just moved to a new house, someone just moved out of it. What do you
do to protect your belongings/property?

Do you change the locks?
Do you buy security cameras?
* Do you hire a security guard?

* Do you even bother locking the door?

Security: Managing Risk

o Security architecture is a set of mechanisms and policies that we build into
our system to mitigate risks from threats

* Threat: potential event that could compromise a security requirement

o Attack: realization of a threat

* Vulnerability: a characteristic or flaw in system design or implementation, or in
the security procedures, that, if exploited, could result in a security
compromise

Costs & Benefits

* |ncreasing security might:
* |[ncrease development & maintenance cost
* |ncrease infrastructure requirements
 Degrade performance
 But, if we are attacked, increasing security might also:
* Decrease financial and intangible losses

 So: How likely do we think we are to be attacked in way X?

Threat Models

 What is being defended?
 What resources are important to defend?
* What malicious actors exist and what attacks might they employ?
 Who do we trust?
 What entities or parts of system can be considered secure and trusted
 Have to trust something!

* Never trust remote users (especially remote users!)

Example: Client/server application

Authentication

function checkPassword(inputPassword: string){
if (inputPassword === 'letmein') {
return true;

}

return false;

}

Should this go in our frontend code?

Example: Client/server application

Authentication
RS
Users might be malicious
Trust boundary - — — — — — — — — — — — — — =—
We control this side

|II%HHHHHHII\

function checkPassword(inputPassword: string){
if (inputPassword === 'letmein'){
return true;

}

return false;

}

Example: Threat at the Boundary
Web Server

O

H

client page
(the “user”)

HTTP Request

HTTP Response

server

Example: Threat at the Boundary
Web Server

O

H

client page
(the “user”)

HTTP Request

HTTP Response

server

Do | trust that this request really
came from the user?

Example: Threat at the Boundary
Web Server

HTTP Request

O .

HTTP Response

<

client page
(the “user”)

server

_ Do | trust that this request really
Do | trust that this response came from the user?

really came from the server?

R

Example: Threat at the Boundary
Web Server

HTTP Request

> v HTTP Request

HTTP Response
« HTTP Response

<

malicious actor

client page
Pad “black hat” Server

(the “user”)

_ Do | trust that this request really
Do | trust that this response came from the user?

really came from the server?

- Might be “man in the middle”
Example- Th rez that intercepts requests and “y

Web Server impersonates user or server.

————

v HTTP Request

HTTP Request

HTTP Response

« HTTP Response
client page m?\kl)clnotshac”tor corver
(the “user”) ack hat

Do | trust that this request really

really came from the server?

Threat Models: Web Server

Preventing the man-in-the-middle with SSL

O

H

client page .‘

(the “user”) amazon.com certificate
(AZ’s public key + CA’s sig)

HTTP Request

HTTP Response

server

http://amazon.com

Threat Models: Web Server
Preventing the man-in-the-middle with SSL

HTTP Request

O Encrypt

HTTP Response

<

Encrypted response

A

'l

Your connection is not private S e I’VG r

Attackers might be trying to steal your information from 192.168.18.4 (for example, passwords, amazon -Com Certlflcate

messages, or credit cards). Learn more (AZ ,S pUb"C key + CA,S Sig)

NET::ERR_CERT_AUTHORITY_INVALID

http://amazon.com

SSL: A perfect solution?

Certificate authorities

* A certificate authority (or CA) binds some public key to a real-world entity that
we might be familiar with

 The CA is the clearinghouse that verifies that amazon.com is truly
amazon.com

* CA creates a certificate that binds amazon.com's public key to the CA’s
public key (signing it using the CA’s private key)

http://amazon.com
http://amazon.com
http://amazon.com

Certificate Authorities

Certificate Authority

M

amazon.com certificate

(AZ’s public key + CA’s sig)

My Laptop

Some . orld
proof th~._we are
ro

dmazon.com

http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com

Certificate Authorities

 Note: We had to already know the CA's public key
 There are a small set of “root” CA’s (think: root DNS servers)

 Every computer/browser is shipped with these root CA public keys

Safari is using an encrypted connection to cs.gmu.edu.

Encryption with a digital certificate keeps information private as it’s sent to or from the

i https website cs.gmu.edu.
-

=. USERTrust RSA Certification Authority
“+ =J InCommon RSA Server CA

Ls “J cs.gmu.edu

cs.gmu.edu
Issued by: InCommon RSA Server CA

Expires: Saturday, December 1, 2018 at 6:59:59 PM Eastern Standard Time
® This certificate is valid

» Trust
» Details

? Hide Certificate .- O |

Certificate Authorities

Nation-state-scale attackers

 What happens if a CA is compromised, Security
and issues invalid certificates? Fuming Google tears Symantec a new
one over rogue SSL certs
e Not good times. We've got just the thing for you, Symantec ...
By lain Thomson in San Francisco 29 Oct 2015 at 21:32 36) SHARE Y
Security

Comodo-gate hacker brags about
forged certificate exploit

Tiger-blooded Persian cracker boasts of mighty
exploits

Gooale has read the riot act to Svmantec. scoldina the securitv biz for its

Dependencies and Development Environment

Do we trust our own code? Third-party code provides an attack vector

@ ESLint Q Searchthe docs... User guide~ Deve

Postmortem for Malicious
Packages Published on July 12th,
2018

Summary

On July 12th, 2018, an attacker compromised the npm account of an ESLint maintainer
and published malicious versions of the eslint-scope and eslint-config-
eslint packages to the npm registry. On installation, the malicious packages
downloaded and executed code from pastebin.com which sent the contents of the
user's .npmrc file to the attacker. An .npmrc file typically contains access tokens for
publishing to npm.

The malicious package versions are eslint-scope@3.7.2 and eslint-config-
eslint@5.0.2, both of which have been unpublished from npm. The pastebin.com
paste linked in these packages has also been taken down.

npm has revoked all access tokens issued before 2018-07-12 12:30 UTC. As a result, all
access tokens compromised by this attack should no longer be usable.

The maintainer whose account was compromised had reused their npm password on
several other sites and did not have two-factor authentication enabled on their npm
account.

We, the ESLint team, are sorry for allowing this to happen. We

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes

T T N T T N TN T TN I ST =TT

HARD LESSONS OF THE SOLARWINDS HACK

Cybersecurity reporter Joseph Menn on the massive
breach the US didn’t see coming

By |

| Jan 26, 2021, 9:13am EST

f S (77 sHare

iInto a network

n December, details came out on one of the most massive
breaches of US cybersecurity in recent history. A group of
hackers, likely from the Russian government, had gotten

management companyv called SolarWinds and

infiltrated its cu

https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-

to breach ever

cybersecurity-us-menn-decoder-podcast

. .
. I

| - N PR | l(\ by P R [AR R &

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-cybersecurity-us-menn-decoder-podcast
https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-cybersecurity-us-menn-decoder-podcast

Costs & Benefits

We can fix everything at a cost...

* We can ensure our code is not tampered with by running all of it on our own machines
(remove logic from frontend)

* |Increases latency
e \What if someone hacks into our server?

* We can fix the certificate authority issue by securely distributing our own certificate (out of
band)

 Cumbersome
 What if someone hacks into the client and replaces certificate?

e Can we trust our own code? How?

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe that security is a spectrum, and be able to define a realistic
threat model for a given system

* Evaluate the tradeoffs between security and performance in software
engineering

This work is licensed under a Creative Commons
Attribution-ShareAlike license

* This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

e You are free to:

e Share — copy and redistribute the material in any medium or format
 Adapt — remix, transform, and build upon the material
e for any purpose, even commercially.

* Under the following terms:

e Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

e ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

 No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

