
Jonathan Bell, John Boyland, Mitch Wand 
Khoury College of Computer Sciences 
© 2021, released under CC BY-SA

CS 4530 & CS 5500 
Software Engineering
Lecture 9.3: Software Engineering & Security Threats

http://creativecommons.org/licenses/by-sa/4.0/


Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe that security is a spectrum, and be able to define a realistic 
threat model for a given system


• Evaluate the tradeoffs between security and costs in software 
engineering



What does it mean for a system to be secure?
CIA: An overview of security properties

• Confidentiality: is information disclosed to unauthorized individuals?


• Integrity: is code or data tampered with?


• Availability: is the system accessible and usable?



Security isn't (always) free
In software, as in the real world…

• You just moved to a new house, someone just moved out of it. What do you 
do to protect your belongings/property?


• Do you change the locks?


• Do you buy security cameras?


• Do you hire a security guard?


• Do you even bother locking the door?



Security: Managing Risk

• Security architecture is a set of mechanisms and policies that we build into 
our system to mitigate risks from threats


• Threat: potential event that could compromise a security requirement


• Attack: realization of a threat


• Vulnerability: a characteristic or flaw in system design or implementation, or in 
the security procedures, that, if exploited, could result in a security 
compromise



Costs & Benefits

• Increasing security might:


• Increase development & maintenance cost


• Increase infrastructure requirements


• Degrade performance


• But, if we are attacked, increasing security might also:


• Decrease financial and intangible losses


• So: How likely do we think we are to be attacked in way X?



Threat Models

• What is being defended?


• What resources are important to defend?


• What malicious actors exist and what attacks might they employ?


• Who do we trust?


• What entities or parts of system can be considered secure and trusted


• Have to trust something!


• Never trust remote users (especially remote users!)



Example: Client/server application
Authentication

function checkPassword(inputPassword: string){

  if(inputPassword === 'letmein'){

    return true;

  }

  return false;

}

Should this go in our frontend code?



Example: Client/server application
Authentication

function checkPassword(inputPassword: string){

  if(inputPassword === 'letmein'){

    return true;

  }

  return false;

}

Frontend

Backend

Trust boundary
We control this side

Users might be malicious



Example: Threat at the Boundary
Web Server

client page

(the “user”) server

HTTP Request

HTTP Response



Example: Threat at the Boundary
Web Server

client page

(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really 
came from the user?



Example: Threat at the Boundary
Web Server

client page

(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really 
came from the user?Do I trust that this response 

really came from the server?



Example: Threat at the Boundary
Web Server

client page

(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really 
came from the user?Do I trust that this response 

really came from the server?

HTTP Request

HTTP Response

malicious actor

“black hat”



Example: Threat at the Boundary
Web Server

client page

(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really 
came from the user?Do I trust that this response 

really came from the server?

HTTP Request

HTTP Response

malicious actor

“black hat”

Might be “man in the middle” 
that intercepts requests and 
impersonates user or server.



Threat Models: Web Server
Preventing the man-in-the-middle with SSL

client page

(the “user”) server

HTTP Request

HTTP Response

amazon.com certificate 
(AZ’s public key + CA’s sig)

http://amazon.com


Threat Models: Web Server
Preventing the man-in-the-middle with SSL

client page

(the “user”) server

HTTP Request

HTTP Response

amazon.com certificate 
(AZ’s public key + CA’s sig)

Encrypted request

Encrypted response

http://amazon.com


SSL: A perfect solution?
Certificate authorities

• A certificate authority (or CA) binds some public key to a real-world entity that 
we might be familiar with


• The CA is the clearinghouse that verifies that amazon.com is truly 
amazon.com


• CA creates a certificate that binds amazon.com's public key to the CA’s 
public key (signing it using the CA’s private key)

http://amazon.com
http://amazon.com
http://amazon.com


Certificate Authorities
Certificate Authority

Amazon

amazon.com 
public key

CA private key

amazon.com 
private key CA public key

Some real-world 
proof that we are 

really 
amazon.com

My Laptop

CA private key
amazon.com certificate 

(AZ’s public key + CA’s sig)

amazon.com 
public key

amazon.com certificate 
(AZ’s public key + CA’s sig)

CA public key

http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com


Certificate Authorities

• Note: We had to already know the CA's public key


• There are a small set of “root” CA’s (think: root DNS servers)


• Every computer/browser is shipped with these root CA public keys



Certificate Authorities
Nation-state-scale attackers

• What happens if a CA is compromised, 
and issues invalid certificates?


• Not good times.



Dependencies and Development Environment
Do we trust our own code? Third-party code provides an attack vector

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-

cybersecurity-us-menn-decoder-podcast 

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-cybersecurity-us-menn-decoder-podcast
https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-cybersecurity-us-menn-decoder-podcast


Costs & Benefits
We can fix everything at a cost…

• We can ensure our code is not tampered with by running all of it on our own machines 
(remove logic from frontend)


• Increases latency


• What if someone hacks into our server?


• We can fix the certificate authority issue by securely distributing our own certificate (out of 
band)


• Cumbersome


• What if someone hacks into the client and replaces certificate?


• Can we trust our own code? How?



Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe that security is a spectrum, and be able to define a realistic 
threat model for a given system


• Evaluate the tradeoffs between security and performance in software 
engineering



This work is licensed under a Creative Commons 
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy 
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ 


• You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

• for any purpose, even commercially.


• Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. 

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your 
use. 


• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under 
the same license as the original. 


• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others 
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

